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ABSTRACT
The given paper provides a brief introduction to dynamical systems and some light on the idea of Fort space
and several known results concerning almost periodic points and minimal sets of maps are discussed.
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1. INTRODUCTION

All the number system such as sets of real numbers, integers, non-negative integers, positive integers and
natural numbers mainly denoted by , , 0, + and  respectively play an important role in dynamical system.

Dynamical system is a collection of probable states governed by certain rules to determine the current phase of
the system in context of the past state.

Dynamical system is categorized mainly into two different forms. When the dynamical system is restricted by
discrete time, it is termed as discrete-time system/dynamical system. In such system, input and output are the
current state and new state respectively. State of the system is a rule which is governed by some information
referred as input for the system [1]. Composition of mapping is an evolutionary process of studying dynamical
system5. If : ,f S S S   , then by using mathematical induction, you can obtained the functions

 1 2 3 1 1, , , , ,n n nf f f f f f of  using iteration [2].

Dynamical systems have different notations for its categorised forms. Its discrete form is defined
as : ,f X X X   , where 1 ,n nf f o f n N    and  0 Identity functionf I . In dynamical

system the composite mapping is defined as , ,m n m nf f o f m n    ¥ and 1n nf f f n  ¥ . The

invertible mapping for isomorphic function f is defined as   1
,n nf f n

   ¥ . For the dynamical

systems  ,X f and  ,Y g we get a new dynamical system       , , ; ,h x y f x g y x X y Y  

and its inverse function is defined as       1 1 1, , ; ,h x y f x g y x X y Y     .

The second main category of dynamical system is the limiting case of discrete dynamical systems where inputs
are updated even for very small interval of time. For such system, the governing rule consists of sequence of
differential equations; which referred as continuous-time dynamical system.

In dynamical system forecasting of developing system is performed with the passage of time. Thus, for given
value of x, you will get the function  kf x for large k. In dynamical system  ,X f , for any point a X , the

set of points           2 3 1, , , , , ,n na f a f a f a f a f a denoted by  ,O a f termed as orbit of ‘a’ and ‘a’ is

known as the seed or initial value of the orbit [1]. Here, function f is termed as map, since, its domain and range
both are the same.
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A point a X is called a recurrent point of f and  ,O a f is called a recurrent orbit if for any neighbourhood

Na of ‘a’ any m  N  an integer n > m such that  n
af a N .

Some time the functional value at any stage becomes equal to its initial value. The initial value a is termed as
fixed point of the map, i.e.,  f a a [2]. The iterated value of the function : ,p X X X   defined by

   2 1p x x x  are given by {0.01, 0.0198, 0.0388,..} represents the orbits of p. Here,  p a a

for
10,
2

a  , thus these are the fixed point of p. It is not necessary that every point of an orbit is a fixed point;

several points on the map of the function which are not fixed, termed as eventually fixed. For example, x = −1
which is a seed of the function f defined by   2f x x is eventually fixed since  1 1 1f     but

      2 1 1 1 1f f f f     . Thus, the point 1 lying on the orbit of x is fixed which shows that x is

eventually fixed [2]. The fixed point of the orbit may be stable or unstable that can be checked using
differentiation. The analytic real functions which are always continuous recall as smooth functions.
If :f R R and a is any its fixed point. Then,

 a is of attracting nature if   ,I    and a  I, if x  I then  lim n

n
f x a




 a is of repelling nature if   ,I    and a  I, if x  I then  lim n

n
f x a





There are some points termed as neutral fixed point which is neither attracting nor repelling [3].

There is some point on a map whose value is same as the functional value of some iterated function; this value
is termed as periodic point. Thus, point  is known as a periodic point of period m or period-m point if for any
least positive integer m such that  mf    and the orbit associated with this point is recall as period-m
orbit.

For example, the function f defined by   2 1f x x  has a periodic point  = 0 of period m = 2, since

      2 1 0f f f f        .

It is not necessary that every seed  of the orbit becomes periodic point, there are some points in the orbit of 
which becomes periodic point and then  will be eventually periodic point [2].

The dynamical system is governed by the time factor[3]. Thus, the metric d and continuous function f defined
over the non-empty set X constitute a dynamical system  ,X f 13. The given system is said to be trivial if it

contain single point, for such system mapping is said to be an identity mapping which is always unique[3]. If
the metric d defined over a compact metric space X having a countable basis the given dynamical system
 ,X f recall as topological dynamical system.

A discrete dynamical system becomes a topological dynamical system if the continuous mapping f is one-one,
onto and 1f  is continuous. For this case topological dynamical system is also invertible. If there is

homeomorphism h between the metric spaces  1 1,X d and  2 2,X d respectively such that 2 1f o h h o f

i.e.,      2 1f h x h f x  x  X1, then the dynamical systems  1 1,X f and  2 2,X f defined over

the given metric spaces are said to be conjugate dynamical systems.
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If for any seed a of the system X, if its orbit           2 3 1, , , , , , ,n na f a f a f a f a f a  is dense

in X, then the dynamical system  ,X f is said to be transitive[13]. Also f is isometric if it preserves the

distance[1].

For each member x of  ,X f its orbits is the set denoted by

        2Orb , ,  ,  ,..., ,...  nx f x f x f x f x and its limiting case is     
1

, ,i

n

x f f x i n




 
Any point x of  ,X f is called an almost periodic point of f and  ,O x f is called an almost periodic orbit

if for any neighbourhood xN of x  k ∈ N such that    ; n i
xf x N 1,  2,  3,...   i k n Z .

Every component of limiting case is recall as recurrent point[3] and its collection  R f is f-invariant.

Periodic points are always recurrent. In  ,X f if f is invertible, then  -limit set of x

is      , ,i
n Nx x f f x i n  
    . Both the sets  ,x f and  ,x f are closed and f-invariant.

 Point phase spacex X is non-wandering point if for any neighbourhood G of x n ¥ such

that  nf G G  . The set of non-wandering points  ,WN x f is closed, f -invariant, and contains the

points of  ,x f and  ,x f for all the members x of X    ,WR f N x f  . If Y is a non-empty

closed invariant subset of X, then  ,Y f is also a dynamical system recall as a subsystem of  ,X f .

If Y X   where Y Y &  f Y Y , then Y is f-minimal subset of X. A compact invariant set Y is

minimal iff   ,n if y Y y Y i
   ¢ and  n if y is dense in Y. Thus, a periodic orbit is a minimal set.

Topological dynamical system is consistently minimal if and only if it does not have any proper subsystem.
Thus, any non-empty closed invariant subset Y of X is minimal iff   Y ,n

i if y y Y n    ¥ . The

member x of the phase space X termed as minimal point or almost periodic point if it is the member of minimal
set.

In this paper we raise the concept of Fort space. For this we will generalize the results of Gottschalk [6] to Fort
spaces. Our main aim is, by means of such a generalization, to find some more essential connections between
almost periodic points and minimal sets in Fort’s space.

2. FORT TOPOLOGY AND FORT’S SPACE

Theorem 2.1 Let X be any uncountable set and let  be a fixed point of X . Let

   , ,  and is finiteG G X G G G X G X G         .Then  is a topology on X.

Proof:
Let us consider two space  1 and  2 such that  1 ,G G X G    and

 2 ,  and is finiteG G X G X G     , then 1 2   
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(I) , and X X X           is a finite set 2X X    
(II) 1 2Let ,A A  .

Case I: Let 1 2 1,  A A  . Then, 1 2 and A A   . Hence 1 2 A A   .

Thus, 1 2 1 1 2  A A A A     
Case II: Let 1 2 2,  A A  . If 1 2A  1 1and is finiteA X A   .

If 2 2A  2 2and is finiteA X A   .

1 2 A A   and      1 2 1 2 is finiteX A A X A X A      .

Hence, 1 2 2 1 2  .A A A A     

Case III: Let 1 1A  and 2 2A  .

Then, 1 1 2 A A A     1 2 1 1 2  .A A A A      

Case IV: Let 2 1A  and 1 2A  .

Then, 2 1 2 A A A     1 2 1 1 2  .A A A A      

It is concluded that in all the four cases, the membership of set A1 and A2 in the space  shows that their
common members are the members of the space , i.e., 1 2 .A A  

(iii) Let  indexedsetA     .

If 1A     , then 1.A A 


  


   
Hence, .A







Now for 0  such that

0 1A  this infers that
0 2A  .

This shows
0

A and
0

X A is a finite set.

Now,
0

A A 


  0
A A 






    and X A X A A  
  

    .

As
0

X A is a finite set, then, X A


 will also become finite set.

Therefore, in this situation 2 .A A 
 

 
 

   
Hence, after observation we can say that in either case .A A 



  


    
After the study of (i), (ii) and (iii) we can say that  is a topology on X.
This topology  is called Fort’s topology on X and the topological, i.e. T-space  ,X  is called Fort’s space.

Separation Axioms
T0- space: A topological space  ,X  is said to be a T0 – space or Kolomogrov space, if x1 and x2 are any

two distinct points of  ,X  then  an open set G  such that if x G then y G and vice versa.
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T1- space: A topological space  ,X  will be a T1 – space or Fréchet space, if

for  1 2 1 2, , ;x x X x x  then there exists open sets
1 2
,x xG G  such that if

1 2
,x xx G G   then 1y G and if 2y G then 2x G .

T2- space: A topological space  ,X  is said to be a T2 – space or Hausdorff space, if x1 and x2 are any two

distinct points of  ,X  then there exists open sets
1 2
,x xG G  such that if

11 xx G and

22 xx G then
1 2x xG G   .

T3- space: A topological space  ,X  is said to be a T3 – space, if A is a closed set and b is not the member

of A then there exists disjoint open sets ,a bG G  such that a bb A G G     .

T4- space: A topological space  ,X  is said to be a T4– space, if A and B are disjoint closed sets in  ,X 

then there exists disjoint open sets ,A BG G  such that &A BA G B G  . In other words  ,X  is said

to be a T4– space, if and only if every open set G contains a closed neighborhood of each closed set contained
in G.
T5- space: A topological space  ,X  is said to be a T5– space, if A and B are separated sets in  ,X  then

there exists open sets ,A BG G  such that &A BA G B G  .

Regular space: A topological space  ,X  is said to be regular if for any closed set F ⊂ X and any point x ∈
X – F there exists disjoint open sets 1 2,G G  such that 1x G and 2F G .

In other way a topological space  ,X  is said to be regular if it satisfies the following axiom. “If F is a closed
subset of X and x is a point of X not in F, Then there exist a
continuous function  : 0,1f X  such that   0f x  and    1f F  .

A regular T1-space is called a T3-space. We now raise a notion of ω-regular space.

ω-regular space: Since, a Fort space is defined by

   , ,  and is finiteG G X G G G X G X G         . Now the Fort space  ,X  is said

to be an ω-regular space if for any closed set F ⊂ X and any point x ∈ X – F and any countable set A ⊂W, there

exists disjoint open sets 1 2,G G  such that 1x G and 2A G .
It follows from the definition that all regular spaces are ω-regular. But converse need not be true, i.e., ω-regular
space not necessary a regular space. Thus the notion of ω-regular space is more extensive than that of regular
space.

Closure and Compactness of Fort’s space

Theorem 2.2 Every Fort space is compact space.

Proof. Let X be an uncountable set and let  be a fixed point of X .
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Let    , ,  and is finiteG G X G G G X G X G         .Then  ,X  is a topological

space and thereby a Fort space.
In order to prove that  ,X  is compact space, prove that every open cover of X has a sub-cover.

Let  G G  be any open cover for X, i.e., X G


  .

Since, X G


  and X , we obtained
0

G for some 0  .

By the definition of  ,X  ,
0

G  0
X G  is a finite subset of X.

Let  
0 1 2, , , nX G x x x   . Choose  i

G G   such that  , 1,
iix G i i n   .

Therefore,  0 0 0 1 n
X G X G G G G          

And thereby
0 1 n

X G G G G   


     .

This infers that every open cover  G G  of X possess finite sub-cover and this shows that every

Fort space is compact, i.e.,  ,X  is compact.

Theorem 2.3 Every Fort space is countably compact.

Proof:
As here it is proved that every Fort space is compact space, thus, it requires to prove that
every compact space is countable compact.
Consider that there exists a Fort space  ,X  , which is not countably compact. Hence, there exists an infinite

set A X having no limit point in X. Thus, each x X is not a limit point of A. But then for each x X ,
 an open set xG contains x such that

 xG A x    .

 Either or .x xG A G A x x X       

Again as  x x XG  forms an open cover for X, which is already a compact space, hence X have finite sub-

cover.

Let
1

i

n

x
i

X G


 
1 1

i i

n n

x x
i i

A X A G A G A
 

             
 

Since,  
ix iG A x  or  , 1,

ix
G A i i n   

1
i

n

x
i

G A


    must be a finite set.

Hence A is a finite set of X, which is a contradiction.

Thus, or supposition is wrong, hence every compact space is countably compact and thereby the Fort space are
countably compact space.

Theorem 2.4 Every Fort space is a T2 – space, i.e., a Hausdorff space.

Proof:
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Let X be an uncountable set and let  be a fixed point of X .
Let    , ,  and is finiteG G X G G G X G X G         .Then  ,X  is a topological

space and thereby a Fort space.
Let us consider two space  1 and  2 such that  1 ,G G X G    and

 2 ,  and is finiteG G X G X G     , then 1 2    is a topology on X.

We need to prove that  ,X  is a T2 – space, for this consider two distinct points x and y of X.

Case I: Let x and y both are different from the fixed point .
Let  G x and  H y , then G H  

Case II: Let y = . Then  G X   and  H  are disjoint open sets containing x and  respectively.

Thus from both the cases we conclude that  ,X  , i.e., the Fort’s space is a Hausdorff space.

A topological space  ,X  is said to be regular if it satisfies the following axiom.

“If    ,F closed X  and &x X x F  , then  a continuous function  : 0,1f X  such that

 : 0,1f X    0f x  and    1 .f F 

Definition: Family of sets holds finite intersection property if its each finite subset have non-void intersection.

Theorem 2.5 A topological space  ,X  is compact if and only if every family of closed sets having the

finite intersection property has a non-empty intersection.

Proof: Necessary Condition:

Let  ,X  be compact space and let  F F  be a family of closed sets in X holds finite

intersection property.
To prove that F



  .

Suppose F


  , then X F X


 
  

 
  X F X



   .

Thus the family  X F  forms an open cover for  ,X  As  ,X  is compact, this open cover

has finite sub-cover.

Let  
1

i

n

i

X X F


  . But then
1

i

n

i

F


  a contradiction to our assumption.

Hence F


 
Sufficient Condition:
Let any family of closed sets in  ,X  holds finite intersection property.

To prove that  ,X  is compact. Let suppose  ,X  is not compact. Then there exist an open cover ofC

such that
1

i

n

i

X G


 for any finite n.
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Hence  
1

i

n

i

X G


   for any finite n.

Thus the family  X G  of closed sets holds finite intersection property. Hence by assumption

 
1

i

n

i

X G


   , i.e., X G


  which is a contradiction.

Hence our assumption is wrong. Therefore  ,X  must be compact space.

Theorem 2.6 A T – space  ,X  is compact if and only if every basic open cover of has a finite subcover.

Proof: Let  ,X  be a compact. Then every open cover of  ,X  has a finite subcover. In general, every

basic open cover of  ,X  must have a finite subcover.

Conversely, suppose that every basic open cover of  ,X  has a finite subcover and let

 C G   be any open cover of  ,X  . If  B B be any open base for  ,X  ,

then each G is union of some members of and the totality of all such

members of  is evidently a basic open cover of  ,X  . By hypothesis this collection of members of  has a

finite subcover, say 1,2,...,
i

B i n  .

For each
i

B in this finite subcover, we can select aG , from  such that
i i

B G  .
It follows that the finite subcollection

 1,2,...,
i

G i n  Which arises in this way is a subcover of .

Hence  ,X  is compact.

Theorem 2.7 Every closed subset of a compact space is compact i.e. compactness is closed
Hereditary.

Proof: Let  ,X  be a compact space and F be a closed subset of  ,X  .

To prove that F is compact. Let  C G   be any open cover of F.

As      X F X F G X F
         shows that forms an open cover for  ,X  .

As  ,X  is compact, this open cover has a finite sub-cover.

Let    
1

i

n

i
i

X G X F


    . Then surely
1

i

n

i

F G



Thus the open cover  C G   of F have predetermined sub-cover. Hence F is compact.

Theorem 2.8 An intersection of closed compact sets of a T-space is a closed compact set.

Proof: Let  ,X  be compact space and let F  be a family of closed compact sets in  ,X  .
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To prove that F

 is a closed compact set in  ,X 

Obviously, F

 is a closed set in  ,X  as F is a closed set for each

Now F F 


 shows that F

 is a closed subset of a compact set F .

Hence, F

 _is a compact set

Theorem 2.9 Let  ,X  be a topological space. Let *  . Then  , *X  is a compact space.

Proof: Let  C G   be an * -open cover for S. Since, *  , therefore  C G  

is also  -open cover for  ,X  .

As  ,X  is compact, there exist a finite sub-cover say  * * ,0
I i iC G        for  ,X  .

But this in turns shows that  , *X  is compact.

Theorem 2.10 Consider two topological spaces  ,X  and  , *Y  where  ,X  is a compact space and

let :f X Y be onto, continuous map. Then  , *Y  should be of same category.

Proof: Suppose  * *C G   is an open cover for  , *Y  .

As *Y G


  and f is onto and continuous map we get  1 1* * ,X f G f G 
 

 

 
  

 
 

* *,G   and we get  1 * ,f G
  

Hence   1 *f G
   forms an open cover for  ,X  . As  ,X  is compact this open cover has

a finite sub-cover. Let  1

1

*
i

n

i

X f G




 . But  1

1

*
i

n

i

Y f G




 ;

  * * an open covering ofC G Y    have finite sub-cover.

Hence,  , *Y  is compact.

Corollary 2.11 Every compact space is a topological space.

Corollary 2.12 Let    continuous
onto: , , *f X Y  associates every compact element of X onto a compact

subset of Y.

Proof: Let E is a compact subset of  ,X  . Restriction of f on the subspace E of  ,X  is continuous onto

map on the subspace f(E) of Y. Hence, f (E) is a compact space of Y.

One point compactification
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We know that every topological space need not be compact. But for non-compact space  ,X  we can formed

a compact space  *, *X  such that X is homeomorphic with some dense subspace of X. This compact space

 *, *X  is called compactification of the space X. If  * ,X X   for some object X then

compactification of X is called one-point compactification.

A topological space is  ,X  is a locally compact space if each point x X has a compact neighbourhood.

Theorem 2.13 Every compact space is locally compact.
Proof: Let  ,X  be a compact space. Then for any x X , X itself is a compact neighbourhood of x. Hence

X is locally compact.

Theorem 2.14 Closed subset of a locally compact space is locally compact.
Proof:- Let  ,X  be a locally compact space and let F be any closed subset of X . For showing the subspace

 , *F  is locally compact consider x be the member of closed set F. As x X and X is locally compact,

then there exist a compact neighbourhood say K of x in  ,X  . As F K is a closed subset of a compact

space K, we get F K is compact neighbourhood of x in F. Hence  , *F  is locally compact.

Countably compact spaces
A topological space  ,X  is said to be countably compact if any infinite subset of X has

a limit point.

Theorem 2.15 Every compact space is countably compact.

Proof: Let we assume that there exists a compact space  ,X  which is not countably compact. Hence, 

A X , an infinite set having no limit point in X. Thus, each x X not necessary a limit point of A. But then

for each x X there exists an open set xG containing x such that  xG A x      . Hence either

xG A   or  ,xG A x x X    . Again  x x X
G


forms an open cover for X, having restricted sub-

cover.

Let
1

i

n

x
i

X G


 . Thus,
1 1

i i

n n

x x
i i

A X A G A G A
 

   
        

   
  .

As  
ix iG A x  or

ix
G A   ,1i i n   &

1
i

n

x
i

n G A


       
 .

Hence A is a finite subset of X; a contradiction.
Thus, our assumption is wrong; hence each compact space is countably compact.

Corollary: Every Fort space is a compact space, thereby countably compact and hence Fort space is a
countably compact space.

First Axiom Spaces
Let  ,X  be a topological space.  ,X  is said to be first axiom if it satisfies the following first axiom of
countability.
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For each point x X , there exists a countable family   n n N
B x


of open sets such that

 nx B x G  for each x N and for any open set G containing x, there exist 0n N such that

 nx B x G  .

The family   n n N
B x


is called a countable local base at x.

“If F is a closed subset of X and x is a point of X not in F, Then there exist a continuous
function  : 0,1f X  such that   0f x  and    1f F  .

Theorem 2.16 A topological space  ,X  is completely regular if and only if for every x X and every

open set containing x, there exists a continuous mapping  : 0,1f X  such

that   0f x  and   1,f y y X G    .

Proof:- Only if part:
Let X be a completely regular x G where G is an open set in X. Then X – G is a closed

set in X with x X G  . As X is completely regular,  a continuous function  : 0,1f X 

such that   0f x  and    1f X G  , i.e.,   1,f y y X G    .

If part:
Assume that for every x G and every open set containing, there exists a continuous mapping

 : 0,1f X  such that   0f x  and   1,f y y X G    .

To prove that X is a completely regular space. Let F be a closed set and x F .
Then X – F is an open set containing x. Hence by assumption, there exist a continuous real valued function

 : 0,1f X  such that   0f x  and    1,f X G y X X F      , i.e.,

  0f x  and   1,f y y F   .

Hence  ,X  is a completely regular space.

Theorem 2.17 Let  ,X  be completely regular space. Let N be neighbourhood of x X .

Then there exist a continuous function  : 0,1f X  such that   0f x  and   1,f y y X N   
and and conversely.

Proof:- As N is neighbourhood of   &x X x G open N G X     .

Hence  x X G  where X G is a closed set in X.

As X is completely regular,  continuous: 0,1f X  such that

  0f x  and    1 ,f X G y X N     .

As x G N  X N X G    we get   1,f y y X N    .

Conversely, assume that there exist a continuous function  : 0,1f X  such that
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  0f x  and   1,f y y X N    .

To prove that  ,X  be completely regular space. Let G be an open set in X such that x G .

As G is neighbourhood of x X there exist a continuous function  : 0,1f X  such that

  0f x  and   1,f y y X G    .

Hence by Theorem 2.1,  ,X  is a completely regular space.

Theorem 2.18 Let  ,X  be a completely regular space. Let F is a closed set in X and x F .

Then  a continuous function  : 0,1f X  such that   1f x and    0f F .

Proof: Let x F and F be a closed set in X. As X is a completely regular space  a continuous

function  : 0,1g X such that   0g x and    1g F .

Define the function  : 0,1g X by    1 , f x g x  x X .

Then f is a continuous function and    0 1 0 1 0 1    f g and

   1 1 1 1 1 0    f g .

Thus  a continuous function  : 0,1f X  such that  0 1f and  1 0g .

Theorem 2.19 A homeomorphic image of a completely regular space is a completely regular space.

Proof: - Let  ,X  be a completely regular space. Let  *, *X be any topological space and

: *f X X be a homomorphism. To prove that  *, *X , is a completely regular space. Let *F be a

closed set in  *, *X , and * *x F . Since, : *f X X is homorphism,

and f is onto, then there exist   *f x x . As f is a continuous function,  1 *f F is a

closed set in X. Thus, * *x F  1* * x f F

Hence X being a completely regular space, there exist a continuous function  : 0,1g X

such that   0g x and     1 * 1   g f F
.

Thus  1 * 0   g f x and     1 * 1   g f F

 1o * 0   g f x and     1 * 1   g f F .

Now  1o : * 0,1 g f X and 1 : * f X X is a continuous as f is a homeomorphism.

Hence 1o g f is a continuous map.

Thus for * *x F there exist a continuous function  1o : * 0,1 g f X such that

 1o * 0   g f x and     1 * 1   g f F .

Hence  *, *X , is a completely regular space. As homeomorphic image of a completely regular space is a

completely regular space, hence  *, *X holds each topological property.

Theorem 2.20 Subspace of a completely regular space is a completely regular space.
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Proof:
Let  ,X  be a completely regular space and suppose  *, *X be its subspace. To prove that  *, *X ,

is a completely regular space. Let *F be a closed set in  *, *X then

   closed * *, * * * * * *F X F F X x F x F x X        .

As  ,X  is a completely regular space and * *x F ,

then        continuous: 0,1 * 0& 1 .f X f x f F   

Let g denote the restriction of f to *X
continuous

Re fg  defined on *X , such that  * 0g x and

   * f F y .

Hence *X , is a completely regular space. Thus subspace of a completely regular space is a
completely regular space. Hence the property of being a completely regular space is a hereditary space.

Theorem 2.21 Every completely regular space is regular.

Proof: Let  ,X  be a completely regular space. To prove that  ,X  is regular. Let

 &x F closed x X F   . As X is a completely regular,

       continuous: 0,1 0& 1 .f X f x f F   

We know that  ,UR is a Hausdorff space.

Therefore, [0, 1] (being a subspace of  ,UR ) is a Hausdorff space.

As 0 1 in  0,1 ,    , opensets 0,1 ;0 &1 .G H G H G H      But  : 0,1f X  is

continuous  1  f G and  1  f H .

Further  1x f G and  1F f H . Thus for x F there exist disjoint open sets  1f G and

 1f H in X such that  1x f G and  1F f H .

Hence  ,X  is a regular space.

Theorem 2.22 A normal space is completely regular iff it is regular.

Proof: As every completely regular space is a regular space (see Theorem 2.21), the proof of
‘only if ’part follows immediately,
To prove if part, assume that X is a normal, regular space. To prove that X is completely
regular space. Let F be a closed set and   x F x X . Then X F is an open set containing x.

As X is a regular space, an open set G in X such that    x G G X F .

As  G X F we get  G F
Thus as G and F are disjoint closed sets in a normal space X. Hence there exist continuous function that

 : 0,1f X  such that    0f G and    1f F (by Urysohn’s Lemma).

As    x G G X F we get   0f x and    1f F . Hence X is a completely regular space.

http://www.ijerms.com/


[Pandey, 4(9) September, 2017] ISSN: 2394-7659
IMPACT FACTOR- 2.789

International Journal of Engineering Researches and Management Studies

© International Journal of Engineering Researches and Management Studies http://www.ijerms.com
[101]

Corollary 2.23 Any compact, T2 – space is completely regular.

Proof:- We know that compact, T2 – space is both normal and regular (see Theorems …and …T2 – space) .
Hence by Theorem 2.7, any compact, T2 – space is completely regular.

Corollary 2.24 Any compact, regular space is completely regular.

Proof:- We know that any compact regular space is normal (see Theorem ….Normal spaces)
Hence by Theorem 2.21, it is a completely regular space.

Theorem 2.25 Every locally compact, Hausdorff space is completely regular.

Proof:
Let  ,X  be a countably compact, Hausdorff space. Let  *, *X be unique point

compactification of  ,X  ,  *   X X , where  X and

 * * *  is a closed compact subset of     G X X G X

Claim 1:  *, *X is a Hausdorff space.

Let x y in *X .

Case 1: , x y X and x y .

As X is a T2 – space, there exist disjoint open sets G and H in  ,X  such that x G and y H . But then

, G H , and hence in this case x and y are separated by disjoint open sets in X.

Case 2: ,  x y X and x y .

As X is a locally compact space and y X is an interior point of some compact
subset say K. Let G be an open set in X such that . x G K As K is a compact subset of a
T2 – space, K is a closed in X and hence *X K is open in *X . Thus ,   x G K X K and G,

*X K are disjoint open sets in *X .
Thus from both the cases we get  *, *X is a Hausdorff space.

Claim 3:  *, *X is a completely regular. As  *, *X is a compact, Hausdorff space, it is
completely regular (By Corollary2.7).
Claim 4:  ,X  is a completely regular. We know that  ,X  is a subspace of  *, *X and

 *, *X is a completely regular space. Hence  ,X  is a completely regular space .

Definition: Completely regular, T1 – space is called a Tichonov space or a 13
2

space.T

Theorem 2.26 Every Tichonov space 13
2

space
 
 
 
T is a T3 – space.

Proof:- As every completely regular space is regular (Theorem 6), every Tichonov space

13
2

space
 
 
 
T is a T3 – space.
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Theorem 2.27 Every space T4 – space is a Tichonov space 13
2

space
 
 
 
T

Proof: Let  ,X  be a T4 – space i.e.  ,X  is a normal T1 – space. To prove that  ,X  is a

Tichonov space. Let x F where F is a closed set in X  x X . As X is a T1 – space, {x} is a closed set in
X.
x F     x F . Hence as X is normal there exist a continuous function  : 0,1f X 

such that     0f x and    1f F (By Urysohn’s Lemma)

Thus for x F there exist a continuous function  : 0,1f X  such that   0f x and    1f F
Hence X is a completely regular space.

Theorem 2.28 Being Tichonov space 13
2

space
 
 
 
T is a topological property.

Proof: - We know that being a completely regular space is a topological property and being a

T1 – space is also a topological property. Hence being a Tichonov 13
2

space
 
 
 
T is a topological property.

Theorem 2.29 Being a Tichonov 13
2

space
 
 
 
T is a hereditary property.

Proof: We know that being a completely regular space is a hereditary property and being a

T1 – space is a hereditary property. Hence being a Tichonov 13
2

space
 
 
 
T is a hereditary

property.

Theorem 2.30 Every Fort space is a completely regular space.

Proof:
Fort’s space is a compact, Hausdorff space.
Hence by Corollary2.8, Fort’s space is completely regular.

Again as Fort’s space is a T1 – space (being a Hausdorff space ) it is a 13
2

space
 
 
 
T .

Problem 1. Every metric space is a completely regular space.

Solution: Let  ,X d be a metric space and let  denote the topology on X induced by the metric d. Let F be

any closed set in X and x F  x X . Then    x F and{x} is a closed set in X. Since  ,X  is

T1-space. As every metric space is normal (see Normal spaces). By Urysohn’s Lemma, there exist a continuous
function  : 0,1f X  such that     0f x and    1f F . But then   0f x and    1f F .

Therefore  ,X  is a completely regular space.

After knowing much more about Fort space, its compactness and role of separation axioms in Fort space let us
prove some results of topological dynamical systems in Fort space.
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Almost periodic orbits and Minimal sets in Fort’s spaces
The results of G.D.Birkhof which exhibit the close connection between almost periodic points and minimal sets
given by:

Theorem A. Let X be a compact metric space, and  0f C X . Then the closure of every almost periodic

orbit of f is a minimal set [8].

Theorem B. Let X be a compact metric space, and  0f C X . Then all points in any minimal set of f are
almost periodic points [8].

Theorems A and B are two well-known theorems in topological dynamical systems, which were first raised and
proved in 1912 by G.D. Birkhoff and are also discussed in Birkhoff [1].

The condition in Theorems A and B that X is a compact metric space can be weakened [8].

Gottschalk [4] proved that Theorem A holds for X being a metric space and Theorem B holds for X being a
locally compact metric space.

Gottschalk [5] further proved that Theorem A holds for X being a regular space, and it follows that Theorem B
also holds for X being a locally compact regular space.

The following theorem is a generalization of Theorem A.

Theorem 2.31. Let X be Fort space and  0f C X . Then the closure of every almost periodic orbit of f is a

minimal set.
Proof: Assume that x is an almost periodic point of the continuous function f, i.e.,  0f C X , where X is a

Fort space which is an ω-regular space. If closure of  ,O x f is not a minimal set, then   ,y O x f such

that x is not the member of orbit generated by function f having seed y, i.e.,  ,x O y f . Since, X is ω-

regular, therefore there exist disjoint open sets 1G and 2G such that 1x G and   2, O y f G . Since x is

almost periodic point of  0f C X , then there exists n ∈  satisfying

   10,1,2,...,   n kf x k n G  n ∈ 
Let  2

0






n

k

k

G f G . Then G is an open set containing y. Since  ,y O x f , then there exists positive

integer n ∈  such that nf G , which infers that     2 1; 0,1,2,...,     n k kf x f G G X G k n

which is a contradiction.
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Thus closure of  ,O x f , i.e.,  ,O x f must be a minimal set. _

This theorem cannot extend to general topological space T1-spaces, that is, the closure of an almost periodic
orbit in a T1-space may not be a minimal set.

3. MINIMAL SETS IN FORT SPACES
In Theorem 2 of [5], Gottschalk proved that if a locally compact regular space X can be decomposed into the
union of minimal sets of some  0f C X , then all points in topological space  ,X f are almost periodic

points of f and each minimal set of f is compact. From the first conclusion of Theorem 2 in [5] it is easy to
derive the following theorem, which is a generalization of the above Theorem B.

Theorem C. Let X be a locally compact regular space, and  0f C X . Then all points in any minimal set of
f are almost periodic points [8].
We now give a generalization of Theorem C to a Fort Space.

Theorem 3.1. Let X be Fort space and  0f C X . Then all points in any minimal set of f are almost periodic

points.

Proof. Let M be a minimal set of  0f C X and x ∈ M. Then x is a recurrent point. Let 0N be a compact

neighbourhood of x. If x is not an almost periodic point of f , then there exist an open neighborhood N of x and
positive integers 1 2 3 ...  n n n such that   0 tnf x N N and

  1,2,...,     tn if x i t N t N

Write   tn
ty f x this infers that this relations constitutes an infinite sets consisting of the elements

 1 2 3, , ,...y y y in N. Since 0N is compact, there exists 0y N such that any neighbourhood N1 of y contains

infinitely many points in  1 2 3, , ,...y y y . Since the minimal set M is closed, we have y M and

 , x O x f M . Thus there exist an m ∈  and a neighbourhood N1 of y such that

   1 m mf y f N N . Take t >m such that ty N this infers that

     1
   tn m m m

tf x f y f N N , which is a contradiction. Thus x must be an almost periodic point of

f .
This theorem cannot be extended to general topological spaces even to general (nonlocally compact) metric
spaces.

Proposition: The map f from the path connected and locally path connected complete metric space X to itself
defined is a point-wise recurrent isometric homeomorphism, the closure of any orbit of f is a minimal set, but
no point in X is an almost periodic point of f .

Thus, in order to ensure that all minimal sets of any continuous self-map of a space contain only almost
periodic points, it is sufficient that the space has the local compactness, and otherwise it may not be sufficient
even if the space has many other nice properties such as connectivity and completeness.
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We have pointed out that not all points of minimal sets in non-locally compact metric spaces are almost
periodic. However, the following theorem shows that all points of some special minimal sets in arbitrary
topological spaces are almost periodic.

Theorem 3.2. Let X be Fort space and  0f C X , and M be a minimal set of f such that every orbit of f in M
is a finite set. Then all points in M are almost periodic points of f .

Proof. Suppose X be Fort space and  0f C X , Consider any point x M . Let for any i Z suppose

  i
ix f x . Since orbit of any point x, i.e.,  ,O x f is a finite set, there exist integers 0 h k such that

0 1 1, ,..., nx x x are equally different points, and n kx x . Let N be any neighbourhood of x. Since x is

recurrent, therefore there must exists integers m k such that mx N , which infers that

      mm i n kx x N i N . Thus x is an almost periodic point of f .

Thus, it can be conclude that:

Corollary. Let X be Fort space and  0f C X , and M be a minimal set of f such that every orbit of f in M is

a finite set. Then all points in M are almost periodic points of f .

Let us now see the application of compactness of minimal sets.
Theorem D. Let X be a locally compact regular space, and  0f C X . Then each minimal set of f is

compact.

Theorem 3.8. Let X be a Fort space which is either Hausdorff or regular and  0f C X .
Then each minimal set of f is compact.

Proof. Suppose X be Fort space and  0f C X . Fort space is Hausdorff space as well as regular space. Let

M be a minimal set of f and x M , and let N be a compact neighborhood of x. Then by the definition of Fort

space and compactness, x is almost periodic point of X. Thus there exists neighbourhood xN of x and positive

integer t such that  tn
xf x N and   1,2,...,     n k

xf x k t N t N

Let  
0


n

k
x

k

W f N , then W is the collection of functional of neighbourhoods, as  0f C X implying f

preserve the mapping, i.e., image of open sets is again open set. Thus, W is compact. This infers that orbit of
every point of f is the member of W, i.e.,  , O x f W . Since for any point   X has a compact and

closed neighborhood yN . Consider some finite sub-covers  1 2
, ,...,

my y yN N N from the cover

 : yN y W of W and suppose
1

 k

m

y
k

Z N . As Z is the union of sub-covers, hence Z is compact set closed

set and hence  ,  O x f W Z this infers that  , V O x f Z
Hence, as a closed subset of the compact set Z , W is compact.

The above theorem is the extension of Theorem C to general locally compact topological spaces.
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4. POINTS IN CLOSURES OF ALMOST PERIODIC ORBITS
Using Theorems A and B we obtained the following theorem [8].
Theorem E. Let X be a compact metric space, and  0f C X .Then all points in the closure of any almost
periodic orbit of f are almost periodic.

Following theorem is the generalized form of Theorem E given by:
Theorem F. Let X be a locally compact ω-regular space, and  0f C X . Then all points in the closure of

any almost periodic orbit of f are almost periodic.

Theorem 4.1. Let X be Fort space and  0f C X . Then all points in the closure of any almost periodic orbit

of f are almost periodic.

Proof. Let x be an almost periodic point of  0f C X , where X is a Fort space which is an ω-regular space,

let  ,y O x f , and let yN be an open neighbourhood of y. Then  t N

and an open neighbourhood xN of x such that  t
x yf N N .

Claim 1. There exists t N such that

  1,2,...,     n k
xf x k t N t N

In fact, if Claim 1 is not true, then there exist integers 1 2 30 ...   n n n such that

  1,2,...,     n k
xf x k t N t N .

Let   
1

0,1,2,...,








  n kA f x k t  A is a countable set in  xX N . Since X is ω-regular and

 xX N is closed, there exist disjoint open sets 1G and 2G in X such that 1  xx G N and 2A G . Since

x is an almost periodic point, there exists an  t N such that

   1 +0,1,2,...,      kf x k m G ZI

Let   t
t

ny f y . Then       2
1, , ,...,  m

t t t ty f y f y f y Y G Let  2 1
0






m

k

k

G f GI . Then

2V is an open set containing ty . Since    , , ty O y f O x f , there is a N such that   2
 f x V ,

this infers that     2 1
0

0,1,2,...,



  
m

k k

k

f x k m f V VU and hence, we have

   10,1,2,...,   kf x k m GI , which is a contradiction. Thus Claim 1 must be true.

It follows from Claim 1 that    1 +0,1,2,...,      kf x k m G ZI . Hence, y is an almost

periodic point of f .

Remark. The condition in Theorem 4.1 that X is an ω-regular space cannot be replaced by that X is a T1-space.
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